
ISO/IEC JTC 1/SC 29/WG 1 N 2415
Date: 2006-12-07

ISO/IEC JTC 1/SC 29/WG 1
(ITU-T SG 16)

Coding of Still Pictures
JBIG JPEG

Joint Bi-level Image Joint Photographic
Experts Group Experts Group

TITLE: JasPer Software Reference Manual (Version 1.900.0)
(Last Revised: 2006-12-07)

SOURCE: Michael D. Adams

Assistant Professor
Dept. of Electrical and Computer Engineering
University of Victoria
P. O. Box 3055 STN CSC, Victoria, BC, V8W 3P6,
CANADA

E-mail: mdadams@ece.uvic.ca
Web: www.ece.uvic.ca/˜mdadams

PROJECT: JPEG 2000

STATUS:

REQUESTED ACTION: None

DISTRIBUTION: Public

Contact:
ISO/IEC JTC 1/SC 29/WG 1 Convener—Dr. Daniel T. Lee
Yahoo! Asia, Sunning Plaza, Rm 2802, 10 Hysan Avenue, Causeway Bay, Hong Kong
Yahoo! Inc, 701 First Avenue, Sunnyvale, California 94089, USA
Tel: +1 408 349 7051/+852 2882 3898, Fax: +1 253 830 0372, E-mail: dlee@yahoo-inc.com

mdadams@ece.uvic.ca
www.ece.uvic.ca/~mdadams
dlee@yahoo-inc.com

THIS PAGE WAS INTENTIONALLY LEFT BLANK
(TO ACCOMMODATE DUPLEX PRINTING).

JasPer Software Reference Manual (Version 1.900.0)

Michael D. Adams

2006-12-07

ii

iii

Contents

1 Introduction 1
1.1 Motivation Behind JasPer . 1
1.2 What is JasPer? . 1
1.3 Software License . 2
1.4 Other Sources of Information on JasPer . 2
1.5 Origin of the Name . 2

2 JasPer Software 3
2.1 Version Identification . 3
2.2 Obtaining the Software . 3
2.3 Extracting the Software . 3
2.4 Building the Software . 4

2.4.1 Build Process for UNIX (or UNIX-Like) Systems 5
2.4.2 Build Process for Microsoft Visual C Studio under Microsoft Windows 6
2.4.3 Dependencies on Other Software . 6

2.5 Reporting Bugs . 7

3 JasPer Library 9
3.1 Introduction . 9
3.2 Core Code . 10
3.3 Codec Drivers . 10
3.4 Image Model . 11
3.5 JasPer Header Files . 12
3.6 Initializing the Library . 12
3.7 Memory Allocation . 13
3.8 Adding Support for a New Image Format . 13

4 Application Programs 15
4.1 Introduction . 15
4.2 The jasper Command . 15
4.3 The imgcmp Command . 17
4.4 The imginfo Command . 18
4.5 The jiv Command . 18

5 Codecs 21
5.0.1 BMP Codec . 21
5.0.2 JP2 Codec . 21
5.0.3 JPC Codec . 21

iv CONTENTS

5.0.4 JPG Codec . 24
5.0.5 PGX Codec . 24
5.0.6 MIF Codec . 25
5.0.7 PNM Codec . 25
5.0.8 RAS Codec . 25

A Software License 27

v

List of Figures

3.1 Software structure. 9
3.2 Image model. (a) An image with N components. (b) Individual component. 11
3.3 Alignment of components on the reference grid. 12

vi LIST OF FIGURES

1

Chapter 1

Introduction

1.1 Motivation Behind JasPer

Digital imagery is used in many of today’s computer software applications. Consequently, software modules
that facilitate the handling of such data are often needed. Almost any application program that deals with
images must address the problem of image interchange and import/export. That is, a means must exist for
moving image data between an application and its external environment. Moreover, applications must often
be capable of rendering an image for display on a particular output device (such as a monitor or printer) with
reasonably accurate color/tone reproduction.

Although image import/export and rendering are very basic functionalities, they are often not easily im-
plemented. Usually, an image is represented in a coded format (such as JPEG-2000 JP2 [8] or JPEG [2]).
Since coding formats are frequently quite complex, the import/export of image data can be a daunting task.
Rendering an image in such a way as to accurately reproduce color/tone requires a color management scheme
of some sort. Unfortunately, developing an effective color management engine can require considerable ef-
fort.

A search for a solution to the above problems led to the development of the JasPer software. The remain-
der of this document provides a detailed description of the this software.

1.2 What is JasPer?

In simple terms, JasPer is a software tool kit for the handling of image data. The software provides a means
for representing images, and facilitates the manipulation of image data, as well as the import/export of such
data in numerous formats (e.g., JPEG-2000 JP2 [8], JPEG [2], PNM [4], BMP [12], Sun Rasterfile [13], and
PGX [9]). The import functionality supports the auto-detection (i.e., automatic determination) of the image
format, eliminating the need to explicitly identify the format of coded input data. A simple color management
engine is also provided in order to allow the accurate representation of color. Partial support is included for
the ICC color profile file format [7], an industry standard for specifying color.

The JasPer software consists of a library and several application programs. The code is written in the C
programming language [3, 11]. This language was chosen primarily due to the availability of C development
environments for most of today’s computing platforms. At present, JasPer consists of approximately 40K
lines of code. Although written in C, the JasPer library can be easily integrated into applications written in
the C++ programming language as well.

2 CHAPTER 1. INTRODUCTION

1.3 Software License

JasPer software development is based on an open-source model. A copy of the software license can be found
in Appendix A.

1.4 Other Sources of Information on JasPer

For more information about the JasPer software, please visit the following web pages:

• JasPer Project Home Page (i.e., http://www.ece.uvic.ca/˜mdadams/jasper)

• JasPer Software Announcements Group (i.e., http://groups.yahoo.com/group/jasper-announce)

By joining this group, one can easily obtain up-to-date information about the JasPer Project in a timely
fashion. The associated mailing list is used to announce new releases of the software and disseminate
other important information about JasPer.

• JasPer Software Discussion Group (i.e., http://groups.yahoo.com/group/jasper-discussion).

For more information about the JasPer software and JPEG-2000 standard, the reader is referred to [6, 5].

1.5 Origin of the Name

The JasPer software is named, in part, after Jasper National Park, the largest national park in the Canadian
Rockies with 10,878 square kilometres of mountain wilderness. As it happens, jasper is also the name of an
opaque cryptocrystalline variety of quartz used for ornamentation or as a gemstone—hence, the implication
that the software is precious (i.e., like a gemstone). Lastly, the name “jasper” was also chosen because it
contains a letter “J” followed subsequently by a letter “P”, not unlike the abbreviation “JP” that is associated
with the JPEG-2000 standard.

http://www.ece.uvic.ca/~mdadams/jasper
http://groups.yahoo.com/group/jasper-announce
http://groups.yahoo.com/group/jasper-discussion

3

Chapter 2

JasPer Software

2.1 Version Identification

As the JasPer software continues to evolve over time, it is important to be able to identify particular releases
of the software. Every release of the JasPer software is named by a version identifier. A version identifier is
comprised of three integers separated by dots. In order, the three integers correspond to the major, minor, and
micro version numbers for the software. For example, the version identifier “1.500.0” corresponds to a major
version of 1, a minor version of 500, and a micro version of 0. In instances where the micro version is zero,
the version identifier may be truncated after the minor version number. For example, the version identifier
“1.500” is completely valid and simply an abbreviation for “1.500.0”.

Given two different releases of the JasPer software, one can easily determine which one is more recent
by comparing the version identifiers, as follows: 1) if the major version numbers differ, the release with
the higher major version number is newer; 2) if the major version numbers are equal and the minor version
numbers differ, the release with the higher minor version number is newer; or 3) if the major version numbers
are equal and the minor version numbers are equal, the release with the higher micro version is newer.

2.2 Obtaining the Software

The latest version of the JasPer software can be downloaded from the following locations:

• JasPer Project Home Page (i.e., http://www.ece.uvic.ca/˜mdadams/jasper)

• JPEG Web Site Software Page (i.e., http://www.jpeg.org/software)

2.3 Extracting the Software

The JasPer software is distributed in the form of a Zip file. Therefore, in order to extract the contents of
this file, a program capable of handling Zip archives is required. Such software is readily available for many
different computing platforms, and can be obtained from:

• Info-Zip Web Site (i.e., http://www.info-zip.org). Unzip software for many different computing
platforms (e.g., UNIX, DOS, MacOS, etc.).

• WinZip Web Site (i.e., http://www.winzip.com). Zip/Unzip software for Microsoft Windows.

http://www.ece.uvic.ca/~mdadams/jasper
http://www.jpeg.org/software
http://www.info-zip.org
http://www.winzip.com

4 CHAPTER 2. JASPER SOFTWARE

2.4 Building the Software

Obviously, before the software can be built, the contents of the archive file containing the JasPer distribution
must be extracted.

The JasPer code should compile and run on any platform with a C language implementation conforming
to ISO/IEC 9899:1999 [3] (i.e., the ISO C language standard) and supporting a subset of ISO/IEC 9945-1 [1]
(i.e., the POSIX C API). Only limited POSIX support is required (i.e., the open, close, read, write, and lseek
functions must be supported).

Portability was a major consideration during the design of the JasPer software. For this reason, the
software makes minimal assumptions about the runtime environment. The code uses very little floating-point
arithmetic, most of which can be attributed to floating-point conversions in printf’s. This minimal use of
floating-point arithmetic should make the code much easier to port to platforms lacking hardware support for
floating-point arithmetic.

The specific procedure required to build the JasPer software depends on the type of system involved.
Only two different build methods are supported. The first method is based on the well known make utility
and should work on most UNIX (or UNIX-like) systems. The second method is specifically tailored to the
needs of Microsoft Visual C under Microsoft Windows. In passing, we note that by using free software
such as Cygwin (http://www.cygwin.com), one can also create a UNIX-like environment under Microsoft
Windows in which to build JasPer using the first method.

If you are unfortunate enough to have a compiler that is not compliant with ISO/IEC 9899:1999, you
may need to make some changes to the code. Unfortunately, even some of the most popular C language
implementations do not strictly comply with the standard. One such example is Microsoft Visual C 6.0. Due
to the popularity of Visual C, however, several workarounds have been added to the JasPer code to ensure
that it will compile successfully with Visual C.

The current version of the JasPer software is known to compile in the following environments:

• Red Hat Linux 7.3, GNU C 2.96, GNU Make 3.79.1

• SunOS/SPARC 5.7, GNU C 2.95, SunOS make

• Windows 2000 Professional, Microsoft Visual C 6.0

Of course, the software should compile successfully in many other environments as well. For example, past
versions of JasPer have been reported to build successfully in the following environments:

• Apple Macintosh PPC G3, Rhapsody 5.6, GNU C 2.7.2.1

• Power Macintosh, GNU/Linux 2.2.15pre9, GNU C 2.95.2

• Sun SPARC, Solaris 2.7, GNU C 2.95.2

• Compaq/DEC Alpha, OSF/1 4.0F, GNU C 2.95.2

• IBM PowerPC, AIX 4.2, GNU C 2.95.2

• HP 9000/712, HP-UX 10.20, GNU C 2.95.2

• SGI Origin 200, IRIX 6.5, GNU C 2.95.2

• OpenVMS Alpha 7.2-1 with Compaq C compiler V6.2-008 (after creating custom makefiles)

http://www.cygwin.com

2.4. BUILDING THE SOFTWARE 5

2.4.1 Build Process for UNIX (or UNIX-Like) Systems

The JasPer software is intended to be built using the standard UNIX make utility (in conjunction with a
configure script).

If you need a C compiler that is reasonably compliant with the ISO/IEC 9899:1999 standard, you can
obtain GNU C from the GNU Project web site (i.e., http://www.gnu.org). If you need an implementation
of the make utility, you can also obtain GNU Make from the the GNU Project web site. All GNU software is
free software.

In what follows, $TOPDIR denotes the top level directory of the JasPer software distribution (i.e., the
directory containing the file named configure). To build the software, the following steps are required (in
order):

1. Set the current working directory to the top level directory of the JasPer software distribution.

To set the current working directory as required, type:

cd $TOPDIR

(where $TOPDIR is defined as described earlier in this section).

2. Perform the initial configuration of the software.

This is accomplished by running the configure script. This process allows important information about
the system configuration to be determined. The configure script also generates makefiles from makefile
templates. In theory, it should not be necessary to manually edit any of the makefile templates (i.e., the
Makefile.in files) used by the configure program. To invoke the configure program, type:

./configure

The configure script accepts a number of options. These options can be listed by invoking the configure
command with the --help option. Unless you know what you are doing (or have problems with
the default build settings), it is strongly recommended that you not override the default settings for
configure.

In some cases, it may be necessary to explicitly disable the use of the IJG JPEG library (i.e., libjpeg).
This is accomplished by supplying the --disable-libjpeg option to configure. For example, such
action may be required if the version of the JPEG library installed on your system is not compatible
with the version of JasPer being built. Also, when building under the Cygwin environment, it may be
neccessary to explicitly disable the use of the JPEG library.

In some situations, it may be necessary to explicitly disable the use of the OpenGL libraries. This is
accomplished by supplying the --disable-opengl option to configure.

3. Compile and link the software.

This is accomplished via the make command. To run the make program, type:

make

4. Install the software.

This step may require special (e.g., superuser/administrator) privileges depending on the target direc-
tory for installation. (The default installation directories are normally under /usr/local.) To install
the executables, libraries, include files, and other auxiliary data, type:

make install

Presuming that the build was successful, the executables for the JasPer application programs can be found in
the directory $TOPDIR/src/appl.

http://www.gnu.org
$TOPDIR
configure
$TOPDIR
$TOPDIR
./configure
--help
--disable-libjpeg
--disable-opengl
make
/usr/local
$TOPDIR/src/appl

6 CHAPTER 2. JASPER SOFTWARE

2.4.2 Build Process for Microsoft Visual C Studio under Microsoft Windows

With Microsoft Visual C, the entire build process is driven from workspace and project files. For the sake of
convenience, all of the workspace and project files necessary to build the JasPer software are provided.

In what follows, $TOPDIR denotes the top level directory of the JasPer software distribution (i.e., the
directory containing the file named configure). To build the software, the following steps are required (in
order):

1. If necessary, install the OpenGL and GLUT libraries on your system.

These libraries are required in order to build the jiv application program which is included in the JasPer
software. The JasPer library itself and the other application programs included with JasPer can be built
without the OpenGL and GLUT libraries, however.

2. Run Microsoft Visual C.

3. Open the JasPer workspace file.

The JasPer workspace file is called jasper.dsw and can be found in the directory $TOPDIR/src/msvc.
The workspace file can be opened using the “File” menu.

4. Build the code.

From the “Build Menu”, select the “Batch Build” item. Choose the projects/configurations that are to
be built, and then, click on the “Build” button. If you do not have the OpenGL and GLUT libraries
(and their associated header files) installed on your system, you should not attempt to build the jiv
application.

Presuming that the build was successful, the release and debug versions of the executables for the JasPer soft-
ware can be found in the directories $TOPDIR/src/msvc/Win32_Release and $TOPDIR/src/msvc/Win32_Debug,
respectively.

2.4.3 Dependencies on Other Software

In order to have access to the full functionality of the JasPer sofware, you may need to install some additional
software on your system. This software must be installed before you attempt to build JasPer.

In order to compile the JasPer software with JPEG support, you will need to download and install the free
IJG JPEG library which is available from the IJG web site (i.e., http://www.ijg.org). If you are not using
a configure-based build for JasPer, then you will need to manually change the build process to use the code
in the files jpg_enc.c and jpg_dec.c instead of jpg_dummy.c. (Note: These three files are contained in the
JasPer distribution, not the IJG library.)

In order to build the jiv application, you will need the OpenGL and GLUT libraries installed on your
system. It would appear that Windows 2000 and Windows XP ship with the OpenGL library from Mi-
crosoft. Most recent versions of UNIX ship with OpenGL support included. The GLUT library is less
common and, therefore, may not be installed on your system. To obtain the GLUT library, one can visit:
http://www.opengl.org/developers/documentation/glut. For more information on the OpenGL li-
brary, see: http://www.opengl.org.

At the time of this writing, a binary distribution of the GLUT library for Windows is available from the
OpenGL web site:

http://www.opengl.org/developers/documentation/glut/glutdlls37beta.zip

This archive file contains three files of interest: 1) glut.h, 2) glut32.lib, and 3) glut32.dll. The
file glut.h file should be installed in a directory in which the C compiler searches for header files (e.g.,

$TOPDIR
configure
jasper.dsw
$TOPDIR/src/msvc
$TOPDIR/src/msvc/Win32_Release
$TOPDIR/src/msvc/Win32_Debug
http://www.ijg.org
jpg_enc.c
jpg_dec.c
jpg_dummy.c
http://www.opengl.org/developers/documentation/glut
http://www.opengl.org
http://www.opengl.org/developers/documentation/glut/glutdlls37beta.zip
glut.h
glut32.lib
glut32.dll
glut.h

2.5. REPORTING BUGS 7

$TOPDIR/src/include/jasper). The glut32.lib file should be installed in a directory in which the C
compiler searches for libraries. The glut32.dll file should be installed in a directory in which the system
looks for dynamically-linked libraries.

2.5 Reporting Bugs

If you are unfortunate enough to encounter any problems with the JasPer software, please submit a bug
report. In order to ensure that your bug report can be properly processed, always be sure to include all of the
following information:

• The version of JasPer in which the problem was found.

• The details of the run-time system (i.e., operating system, version number).

• The compiler that you are using (i.e., vendor, version number).

• The exact command line options used when the problem was observed.

• Indicate whether or not the problem is reproducible. If the problem is reproducible, indicate the exact
steps required to reproduce the problem.

• A detailed description of the problem that you are experiencing.

It is essential that you include all of the above information. Failure to do so may result in the bug report
not being processed. Your complete bug report should be sent to mdadams@ieee.org.

$TOPDIR/src/include/jasper
glut32.lib
glut32.dll
mdadams@ieee.org

8 CHAPTER 2. JASPER SOFTWARE

9

Chapter 3

JasPer Library

3.1 Introduction

The heart of the JasPer software is the JasPer library. In fact, most of the code in JasPer is associated with
this library (as opposed to the JasPer sample application programs). The JasPer library provides classes for
representing images, color profiles (i.e., color space definitions), and other related entities. Each of these
classes has a well-defined interface through which an application may interact with class objects. The library
can be used to manipulate images, import/export image data in a variety of formats, and perform basic color
management operations.

Conceptually, the JasPer library is structured as shown in Fig. 3.1. The library consists of two distinct
types of code: 1) core code, and 2) codec drivers. The core code provides the basic framework upon which the
library is built, while the codec drivers only provide the means for encoding/decoding image data in various
formats. All application interfaces are through the core code. The codec drivers are only ever directly called
by the core code, never by an application.

The codec support in the JasPer library is both modular and extensible. A well-defined interface exists
between the core code and codec drivers. Moreover, support for a new image format can be easily added
without having to modify the library in any way. To do so, a codec driver for the new format simply needs to
be provided. Furthermore, an application need only include codec drivers for the image formats that it will
use. In this way, an application can avoid the cost of increased memory consumption for codec drivers that
are never to be employed.

Base Library
(Image Class)

Application Program

Codec Drivers
(JPEG 2000, JPEG, BMP, PNM, etc.)

JasPer Library

Figure 3.1: Software structure.

10 CHAPTER 3. JASPER LIBRARY

3.2 Core Code

The core code provides a number of key classes as described below. (To avoid name space collisions, all of
the identifiers used by the core code are prefixed with either jas_ or JAS_.)

1. Image class (i.e., jas_image_t). This class is used to represent an image. Methods are provided
for such things as: image creation/destruction, querying general image properties (e.g., reference grid
width and height, color profile), querying component properties (e.g., width, height, grid offset, grid
spacing, component type, sample precision/signedness), setting various image properties, loading and
saving an image (i.e., encoding/decoding), copying an image, adding and deleting components, and
reading and writing component data.

2. Color profile class (i.e., jas_cmprof_t). This class is used to define a color space. Such a definition is
made relative to a reference color space such as CIE XYZ or CIE Lab [7].

3. Color transform class (i.e., jas_cmxform_t). This class is used to apply a color space conversion to
image data. A color space transform is created from two or more color profiles.

4. Stream class (i.e., jas_stream_t). This class provides I/O streams similar to that of standard C li-
brary [3], but with additional functionality required by other code in the JasPer library. This extra
functionality includes: 1) the ability to associate an object other than a file descriptor with a stream
(such as a memory buffer), and 2) multi-character unget.

5. Fixed-point number class. This templated class (i.e., a set of macros) provides a fixed-point number
class. Support is provided for basic arithmetic operations, type conversion, and rounding.

6. Tag-value parser class (i.e., jas_tvp_t). This class is used to parse strings containing one or more
tag-value pairs. A tag-value pair is a string of the form “tag=value”. Tag-value pairs are used by
some interfaces within JasPer in order to pass parameters. For example, such pairs are used to pass
options to codec drivers for encoding/decoding operations. Methods are provides for such things as:
creation/destruction, finding the next tag-value pair in a string, and querying the current tag and value.

In addition to the above classes, some other functionality is provided, including command line parsing rou-
tines (similar in spirit to UNIX getopt).

3.3 Codec Drivers

The core code provides a framework for housing codec drivers. A codec driver provides the means for
encoding/decoding of image data in a particular format. Each driver provides three methods: 1) an encoding,
2) decoding, and 3) validation method. The encoding method emits the coded version of an image (i.e., a
jas_image_t object) to a stream (i.e., a jas_stream_t object). The decoding method creates an image (i.e.,
a jas_image_t object) from the coded data in a stream. The validation method is used to quickly test if the
data in a stream is formatted correctly for the image format in question. This particular method is used for
the autodetection of image formats.

The codec drivers provided with the JasPer distribution are written in order to accommodate streamed
data. In other words, image data streams are always processed in a single pass. This design philosophy
eliminates the need for a stream object to be seekable. As a result, it is possible to write application programs
that receive data from, or send data to, pipelines or other entities that do not support random access to data.

3.4. IMAGE MODEL 11

Component 1

Component 2
...

Component 0

Component N−1

(a)

(b)

Figure 3.2: Image model. (a) An image with N components. (b) Individual component.

3.4 Image Model

The set of applications for which JasPer may be a useful tool is dictated, in part, by the image model that
JasPer employs. Therefore, it is prudent to introduce this model here. The image model employed by JasPer
is quite general and partially inspired by the one used in the JPEG-2000 standard.

An image is comprised of one or more components. In turn, each component consists of rectangular array
of samples. This structure is depicted in Fig. 3.2. The sample values for each component are integer valued,
and can be signed or unsigned with precision from 1 to (nominally) 16 bits/sample1. The signedness and
precision of the sample data are specified on per-component basis. All of the components are associated with
same spatial extent in an image, but represent different types of information.

There is considerable flexibility in the interpretation of components. A component may represent spectral
information (e.g., a color plane) or auxiliary information (e.g., an opacity plane). For example, a RGB image
would have three components, where one component is associated with each of the red, green, and blue color
planes. A RGBA (i.e., RGB with transparency) image would have four components, one associated with each
of the red, green, blue, and alpha planes. The various components need not be sampled at the same resolution.
In other words, different components may have different sampling periods. For example, when color images
are represented in a luminance-chrominance color space, it is not uncommon for the luminance information
to be more finely sampled than the chrominance information.

Since an image can have a number of components, a means must exist for specifying how these compo-
nents are combined together in order to form a composite image. For this purpose, we employ an integer
lattice known as the reference grid. The reference grid provides an anchor point for the various components
of an image, and establishes their alignment relative to one another.

Each component is associated with a rectangular sampling grid. Such a grid is uniquely specified by
four parameters: the horizontal offset (HO), vertical offset (VO), horizontal spacing (HS), and vertical spac-
ing (VS). The samples of a component are then mapped onto the points where the sampling grid intersects
the reference grid. In this way, sample (i, j) of a component is mapped to the position (HO+ iHS,VO+ jVS)
on the reference grid.

To clarify the above text, we now present an illustrative example. Consider an image with three com-
ponents. For the kth component, let us denote the horizontal grid offset, vertical grid offset, horizontal grid

1The maximum allowable precision is platform dependent. Most common platforms, however, should be able to accommodate at
least 16 bits/sample.

12 CHAPTER 3. JASPER LIBRARY

(0,0)

Component 0

Component 1

Component 2

Figure 3.3: Alignment of components on the reference grid.

spacing, and vertical grid spacing, as HOk, VOk, HSk, and VSk, respectively. Suppose, for example, that
these parameters have the following values:

k (HOk,VOk) (HSk,VSk)
0 (0, 0) (2, 2)
1 (2, 3) (3, 4)
2 (3, 2) (4, 3)

In this scenario, the component samples would be aligned on the reference grid as illustrated in Fig. 3.3.
Perhaps, it is worth nothing that the above set of parameter values was chosen in order to provide an enlight-
ening example, and is not meant to represent a set of values that is likely to be used with great frequency by
applications.

From above, we can see that the image model used by JasPer is quite general. The main constraint
imposed by this model is that rectangular sampling must be employed. The vast majority of applications,
however, use such sampling. Also, with JasPer, one can easily accommodate grayscale, color, and other
multi-band data (with or without opacity information).

3.5 JasPer Header Files

In order to use the JasPer library, a C source file normally must include the main JasPer library header file
jasper/jasper.h. This can be accomplished with the following preprocessor directive:

#include <jasper/jasper.h>

The main header file includes all of the other library header files. Therefore, in order to insulate application
code from possible changes to the names of the other library header files, one should only ever include the
main library header directly.

3.6 Initializing the Library

The first usage of the library must always be to initialize it. This is accomplished by calling jas_init. If
any other functionality of the library is used before this initialization is performed, the resulting behavior is
undefined.

jasper/jasper.h
<jasper/jasper.h>
jas_init

3.7. MEMORY ALLOCATION 13

3.7 Memory Allocation

All memory allocation in the libjasper library is performed via the functions jas_malloc, jas_realloc,
jas_calloc, and jas_free. If one is trying to port the JasPer code to an embedded platform, it might be
necessary to change these functions to use a platform-specific memory allocator, rather than malloc and
friends.

3.8 Adding Support for a New Image Format

Support for new image formats can be easily added to JasPer. In order to add support for a new image format,
one must provide three functions:

1. an encoding function,

2. a decoding function, and

3. a validation function.

The encoding function emits the coded version of an image (i.e., an jas_image_t object) to a stream (i.e.,
a jas_stream_t object). The decoding function creates an image (i.e., an jas_image_t object) from the
coded data in a stream (i.e., a jas_stream_t object). The validation function is used to quickly test if a
data stream is formatted correctly for the image format in question. (This functionality is necessary for the
autodetection of image formats.)

The exact types and arguments taken by the encoding, decoding, and validation functions can be found
by examining the code for the image formats already supported by JasPer (e.g., PNM, BMP, JPEG). Once the
above functions have been written, the JasPer library can be made aware of the new image format through a
call to jas_image_addfmt. This call, of course, must be made after the JasPer library has been initialized.
The code for the jas_init function gives several examples of how the jas_image_addfmt function might
be invoked.

jas_malloc
jas_realloc
jas_calloc
jas_free
malloc
jas_image_t
jas_stream_t
jas_image_t
jas_stream_t
jas_image_addfmt
jas_init
jas_image_addfmt

14 CHAPTER 3. JASPER LIBRARY

15

Chapter 4

Application Programs

4.1 Introduction

In order to demonstrate how the JasPer library can be used, several sample application programs are provided
in the JasPer software distribution. These programs include: jasper, jiv, imgcmp, and imginfo. The
jasper program is an image transcoder (i.e., it converts image data from one format to another). The jiv
program is a simple image viewer (based on OpenGL). The imgcmp program is an image comparison utility.
It measures the difference between two images using one of numerous distortion metrics (such as peak signal-
to-noise ratio, mean squared error, root mean squared error, peak absolute error, and mean absolute error).
The imginfo program provides basic information about an image, such as its geometry (i.e., number of
components, width and height of components, and so on). Although the above-mentioned programs are
intended mainly for demonstration purposes, they have also proven quite useful in their own right, especially
the jasper and jiv programs. In the sections that follow, each of the above-mentioned programs is described
in more detail.

4.2 The jasper Command

Synopsis

jasper [options]

Description

The jasper command converts image data from one format to another. In other words, this command functions
as a general-purpose transcoder. Since the JPEG-2000 format is supported by this software, it can be used as
a JPEG-2000 encoder and/or decoder.

Options

The jasper program accepts the following options:

--help
Print usage information and exit.

--version
Print the version and exit.

jasper
--help
--version

16 CHAPTER 4. APPLICATION PROGRAMS

--input file
-f file
Read the input image from the file named file. By default, the input image is read from standard input.

--input-format format
-t format
Specify the format of the input image as format. In most circumstances, this option should not be
needed, as the format is normally autodetected by examining the image data directly or deduced from
the input file name extension if an input file is specified (via the --input option).

--input-option option
-o option
Provide the option option to the decoder. The valid values for the argument option are determined by
the input image format. See below for more details.

--output file
-F file
Write the encoded image to the file named file. By default, the encoded image is written to standard
output.

--output-format format
-T format
Produce the output image in the format indicated by format. The output format must be specified if
an output file is not given (via the ”–output” option). If an output file is given and no output format is
specified, an attempt will be made to deduce the correct format from the output file name extension.

--output-option option
-O option
Provide the option option to the encoder. The valid values for the argument option are determined by
the output format. See below for more details.

--verbose
Enable verbose mode.

--force-srgb
Force the image to be converted to the sRGB color space before encoding. As a side effect, the im-
age will also be homogenously sampled (i.e., all components are sampled at the same points on the
reference grid).

The argument format must have one of the following values:

Value Description
bmp Windows BMP
jp2 JPEG-2000 JP2
jpc JPEG-2000 Code Stream
jpg JPEG
pgx PGX
pnm PNM/PGM/PPM
mif My Image Format
ras Sun Rasterfile

--input
-f
--input-format
-t
--input
--input-option
-o
--output
-F
--output-format
-T
--output-option
-O
--verbose
--force-srgb

4.3. THE IMGCMP COMMAND 17

Examples

1. Suppose that we have an image stored in the PNM/PPM format in a file called lena.ppm. To encode
this image (losslessly) in the JPEG-2000 JP2 format, and store the result in a file called lena.jp2,
type:

jasper --input lena.ppm --output lena.jp2 --output-format jp2

Or, alternately (using short option names), type:

jasper -f lena.ppm -F lena.jp2 -T jp2

2. Suppose that we have a RGB color image stored in the JPEG-2000 JP2 format in a file called lena.jp2.
To encode this image in the PNM/PPM format, and store the result in a file called lena.ppm, type:

jasper --input lena.jp2 --output lena.ppm --output-format pnm

Or, alternately (using short option names), type:

jasper -f lena.jp2 -F lena.ppm -T pnm

3. Suppose that we have an image stored in the BMP format in a file called lena.bmp. To encode this
image in a lossy manner at 100:1 compression in the JPEG-2000 (code stream) format, and store the
result in a file called lena_lossy.jpc, type:

jasper -f lena.bmp -F lena_lossy.jpc -T jpc -O rate=0.01

4. Suppose that we have an image stored in a file called sachie.pnm in the PNM/PPM format, and we
want to encode the image in the JPEG-2000 (code stream) format and store the result in a file named
sachie_new.jpc. Further, suppose that we want the JPEG-2000 format to employ the following
parameters:

• code blocks are 64 samples in width and 32 samples in height

• no multicomponent transform is to be employed

• 4 resolution levels should be employed for each component

• the compression is lossy at 64:1

In order to accomplish the above, type:

jasper -f sachie.pnm -F sachie_new.jpc -T jpc -O cblkwidth=64 -O cblkheight=32
-O nomct -O numrlvls=4 -O rate=0.015625

4.3 The imgcmp Command

Synopsis

imgcmp [options]

Description

The imgcmp command compares two images. The two images being compared must have the same geometry
(i.e., the same width, height, number of components, component subsampling factors, etc.).

lena.ppm
lena.jp2
lena.jp2
lena.ppm
lena.bmp
lena_lossy.jpc
lena_lossy.jpc
sachie.pnm
sachie_new.jpc
sachie_new.jpc
imgcmp

18 CHAPTER 4. APPLICATION PROGRAMS

Options

The following options are supported:

-f file
Read the primary (i.e., reference) image (for comparison purposes) from the file named file.

-F file
Read the secondary image (for comparison purposes) from the file named file.

-m metric
Use the difference metric specified by metric. The metric argument may assume one of the following
values:

Value Description
psnr peak signal to noise ratio (PSNR)
mse mean squared error (MSE)
rmse root mean squared error (RMSE)
pae peak absolute error (PAE)
mae mean absolute error (MAE)
equal equality

The -f and -F options must always be specified. There is currently no way to explicitly specify the format
of the images. If the format of either image cannot be autodetected, the command will exit with an error.

Examples

1. Suppose that we have two slightly different versions of an image stored in files original.pgm and
reconstructed.pgm. In order to calculate the difference between these images using the PSNR met-
ric, type:

imgcmp -f original.pgm -F reconstructed.pgm -m psnr

4.4 The imginfo Command

Synopsis

imginfo [options]

Description

The imginfo command displays information about an image. This command is really only intended to be
used from shell scripts for testing purposes.

4.5 The jiv Command

Synopsis

jiv [options] [file1 file2 . . .]

-f
-F
-m
-f
-F
original.pgm
reconstructed.pgm
imginfo
jiv

4.5. THE JIV COMMAND 19

Description

The jiv command displays an image. Basic pan and zoom functionality is provided. Components of an
image may be viewed individually. Color components may also be viewed together as a composite image. At
present, the jiv image viewer has only trivial support for color. It recognizes RGB and YCbCr color spaces,
but does not use tone reproduction curves and the like in order to accurately reproduce color. For basic testing
purposes, however, the color reproduction should suffice.

Options

The following options are supported:

--help
Print help information and exit.

--wait n
Automatically step from one image to the next, pausing for n seconds in between.

--help
--wait

20 CHAPTER 4. APPLICATION PROGRAMS

21

Chapter 5

Codecs

The JasPer software provides implementations of several popular codecs. Likely, the ones of most interest
are those associated with the JPEG-2000 standard. The sections that follow describe the various codecs in
more detail.

5.0.1 BMP Codec

One of the most popular image formats on the Microsoft Windows platform is Microsoft’s BMP format. The
BMP codec in JasPer was written without the benefit of the BMP format specification from Microsoft. This
means that the BMP support will inevitably not work correctly for all valid BMP files.

Encoder Options

The encoder does not support any special options.

Decoder Options

The decoder does not support any special options.

5.0.2 JP2 Codec

One of the two image formats specified in the JPEG-2000 Part-1 standard (i.e., ISO/IEC 15444-1 [8]) is the
so called “JP2” format.

Encoder Options

The encoder supports all of the same options as the JPC encoder.

Decoder Options

The decoder supports all of the same options as the JPC decoder.

5.0.3 JPC Codec

One of the two image formats specified in the JPEG-2000 Part-1 standard (i.e., ISO/IEC 15444-1 [8]) is the
so called JPEG-2000 code stream format. The JPC codec in JasPer implements this format.

22 CHAPTER 5. CODECS

The design of the JPEG-2000 codec implementation was driven by several key concerns: execution speed,
memory usage, robustness, portability, modularity, maintainability, and extensibility. In some cases, how-
ever, during the design process, modularity, portability, and understandability of the code were weighed more
heavily than execution speed and memory usage. Code understandability and portability were critical consid-
erations since this software was intended to be used as a reference implementation of the JPEG-2000 Part-1
codec in the JPEG-2000 Part-5 standard [10].

Since the JPEG-2000 standard does not specify any means for encoding color space information in a
JPEG-2000 code stream, the decoder must make certain assupmtions about the color space of an image. If
accurate color representation is important, the JPEG-2000 code stream format should not be employed. The
JPEG-2000 JP2 format should be used instead.

Encoder Options

The following options are supported by the encoder:

imgareatlx=x
Set the x-coordinate of the top-left corner of the image area to x.

imgareatly=y
Set the y-coordinate of the top-left corner of the image area to y.

tilegrdtlx=x
Set the x-coordinate of the top-left corner of the tiling grid to x.

tilegrdtly=y
Set the y-coordinate of the top-left corner of the tiling grid to y.

tilewidth=w
Set the nominal tile width to w.

tileheight=h
Set the nominal tile height to h.

prcwidth=w
Set the precinct width to w. The argument w must be an integer power of two. The default value is
32768.

prcheight=h
Set the precinct height to h. The argument h must be an integer power of two. The default value is
32768.

cblkwidth=w
Set the nominal code block width to w. The argument w must be an integer power of two. The default
value is 64.

cblkheight=h
Set the nominal code block height to h. The argument h must be an integer power of two. The default
value is 64.

mode=m
Set the coding mode to m. The argument m must have one of the following values:

imgareatlx=
imgareatly=
tilegrdtlx=
tilegrdtly=
tilewidth=
tileheight=
prcwidth=
prcheight=
cblkwidth=
cblkheight=
mode=

23

Value Description
int integer mode
real real mode

If lossless coding is desired, the integer mode must be used. By default, the integer mode is employed.
The choice of mode also determines which multicomponent and wavelet transforms (if any) are em-
ployed.

rate=r
Specify the target rate. The argument r is a positive real number. Since a rate of one corresponds to no
compression, one should never need to explicitly specify a rate greater than one. By default, the target
rate is considered to be infinite.

ilyrrates=r0[,r1,. . . ,rN−1]
Specify the rates for any intermediate layers. The argument to this option is a comma separated list of
N rates. Each rate is a positive real number. The rates must increase monotonically. The last rate in the
list should be less than or equal to the overall rate (as specified with the rate option).

prg=p
Set the progression order to p. The argument p must have one of the following values:

Value Description
lrcp layer-resolution-component-position (LRCP) progressive (i.e., rate scalable)
rlcp resolution-layer-component-position (RLCP) progressive (i.e., resolution scalable)
rpcl resolution-position-component-layer (RPCL) progressive
pcrl position-component-resolution-layer (PCRL) progressive
cprl component-position-resolution-layer (CPRL) progressive

By default, LRCP progressive ordering is employed. Note that the RPCL and PCRL progressions are
not valid for all possible image geometries. (See [8] for more details.)

nomct
Disallow the use of any multicomponent transform.

numrlvls=n
Set the number of resolution levels to n. The argument n must be an integer that is greater than or equal
to one. The default value is 6.

sop
Generate SOP marker segments.

eph
Generate EPH marker segments.

lazy
Enable lazy coding mode (a.k.a. arithmetic coding bypass).

termall
Terminate all coding passes.

segsym
Use segmentation symbols.

rate=
ilyrrates
rate
prg=
nomct
numrlvls=
sop
eph
lazy
termall
segsym

24 CHAPTER 5. CODECS

vcausal
Use vertically stripe causal contexts.

pterm
Use predictable termination.

resetprob
Reset the probability models after each coding pass.

numgbits=n
Set the number of guard bits to n.

Decoder Options

The decoder does not support any special options.

Rate Specification

All rates are specified in terms of compression factors (i.e., as reciprocals of compression ratio) and not as
actual bit rates! Although image coding folks frequently use the number of bits per pixel to specify rate,
this quantity is often inconvenient to use when dealing with images that have differing sample precisions.
Furthermore, the number of bits per pixel is not well defined for multicomponent images with distinct sub-
sampling factors. The compression factor, however, is independent of sample precision and well defined for
all types of images. For these reasons, JasPer uses the compression factor and not the number of bits per pixel
to specify rates.

5.0.4 JPG Codec

For lossy coding, one of the most popular image formats is specified in the JPEG standard (i.e., ISO/IEC
10918-1 [2]). In JasPer, the JPG codec implements this format.

The JPEG support in JasPer requires the JPEG library from the Independent JPEG Group (IJG). For legal
reasons, the IJG JPEG library source code is not included with JasPer. The source code for this library can
be downloaded from the IJG web site (i.e., http://www.ijg.org).

Encoder Options

The following options are supported by the encoder:

quality=q
Set the quality factor to q. This is used in order to indirectly control the bit rate for lossy coding.

Decoder Options

The decoder does not support any special options.

5.0.5 PGX Codec

The JPEG-2000 Verification Model software employs a non-standard format called PGX. In JasPer, this
format is handled by the PGX codec. The PGX format can only handle single components images, and
consequently, is of limited use.

vcausal
pterm
resetprob
numgbits=
http://www.ijg.org
quality=

25

Encoder Options

The encoder does not support any special options.

Decoder Options

The decoder does not support any special options.

5.0.6 MIF Codec

The MIF format is not a standard format. This format was invented solely for the purpose of testing the JasPer
software. The support for the MIF format is experimental. It is intended to be used for advanced testing of
the JasPer JPEG-2000 codec implementation.

Encoder Options

The encoder does not support any special options.

Decoder Options

The decoder does not support any special options.

5.0.7 PNM Codec

On UNIX platforms, the Portable Pixmap/Graymap/Bitmap (PNM) format is quite popular for coding image
data. The PNM codec in JasPer supports this format. In JasPer, the support for the PNM/PGM/PPM format
is complete. Therefore, the use of this format is favored over the BMP format. A (nonstandard) extension has
also been added to the support for the PNM format so that it can handle images with signed sample values.

Encoder Options

The following options are provided by the PNM encoder:

text
Use a non-raw (i.e., non-binary) flavor of PNM format.

Decoder Options

The decoder does not support any special options.

5.0.8 RAS Codec

One popular image format on Sun workstations is the Sun Rasterfile format. The RAS codec in JasPer
implements this format.

Encoder Options

The encoder does not support any special options.

Decoder Options

The decoder does not support any special options.

text

26 CHAPTER 5. CODECS

27

Appendix A

Software License

The JasPer software may only be used under the terms of the license below.

__START_OF_JASPER_LICENSE__

JasPer License Version 2.0

Copyright (c) 2001-2006 Michael David Adams
Copyright (c) 1999-2000 Image Power, Inc.
Copyright (c) 1999-2000 The University of British Columbia

All rights reserved.

Permission is hereby granted, free of charge, to any person (the
"User") obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the
following conditions:

1. The above copyright notices and this permission notice (which
includes the disclaimer below) shall be included in all copies or
substantial portions of the Software.

2. The name of a copyright holder shall not be used to endorse or
promote products derived from the Software without specific prior
written permission.

THIS DISCLAIMER OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS
LICENSE. NO USE OF THE SOFTWARE IS AUTHORIZED HEREUNDER EXCEPT UNDER
THIS DISCLAIMER. THE SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS
"AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO
EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION

28 APPENDIX A. SOFTWARE LICENSE

WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. NO ASSURANCES ARE
PROVIDED BY THE COPYRIGHT HOLDERS THAT THE SOFTWARE DOES NOT INFRINGE
THE PATENT OR OTHER INTELLECTUAL PROPERTY RIGHTS OF ANY OTHER ENTITY.
EACH COPYRIGHT HOLDER DISCLAIMS ANY LIABILITY TO THE USER FOR CLAIMS
BROUGHT BY ANY OTHER ENTITY BASED ON INFRINGEMENT OF INTELLECTUAL
PROPERTY RIGHTS OR OTHERWISE. AS A CONDITION TO EXERCISING THE RIGHTS
GRANTED HEREUNDER, EACH USER HEREBY ASSUMES SOLE RESPONSIBILITY TO SECURE
ANY OTHER INTELLECTUAL PROPERTY RIGHTS NEEDED, IF ANY. THE SOFTWARE
IS NOT FAULT-TOLERANT AND IS NOT INTENDED FOR USE IN MISSION-CRITICAL
SYSTEMS, SUCH AS THOSE USED IN THE OPERATION OF NUCLEAR FACILITIES,
AIRCRAFT NAVIGATION OR COMMUNICATION SYSTEMS, AIR TRAFFIC CONTROL
SYSTEMS, DIRECT LIFE SUPPORT MACHINES, OR WEAPONS SYSTEMS, IN WHICH
THE FAILURE OF THE SOFTWARE OR SYSTEM COULD LEAD DIRECTLY TO DEATH,
PERSONAL INJURY, OR SEVERE PHYSICAL OR ENVIRONMENTAL DAMAGE ("HIGH
RISK ACTIVITIES"). THE COPYRIGHT HOLDERS SPECIFICALLY DISCLAIM ANY
EXPRESS OR IMPLIED WARRANTY OF FITNESS FOR HIGH RISK ACTIVITIES.

__END_OF_JASPER_LICENSE__

29

Bibliography

[1] ISO/IEC 9945-1: Information Technology—Portable Operating System Interface (POSIX)—Part 1: Sys-
tem Application Program Interface (API) [C Language], 1990.

[2] ISO/IEC 10918-1: Information technology—Digital compression and coding of continuous-tone still
images: Requirements and guidelines, 1994.

[3] ISO/IEC 9899: Programming languages—C, 1999.

[4] Netpbm home page. http://netpbm.sourceforge.net, 2003.

[5] M. D. Adams. The JPEG-2000 still image compression standard. ISO/IEC JTC 1/SC 29/WG 1 N
2412, September 2001. Available from http://www.ece.uvic.ca/˜mdadams and distributed with the
JasPer software.

[6] M. D. Adams and F. Kossentini. JasPer: A software-based JPEG-2000 codec implementation. In Proc.
of IEEE International Conference on Image Processing, Vancouver, BC, Canada, October 2000.

[7] International Color Consortium. ICC.1:2001-12, File Format for Color Profiles (Version 4.0.0). Avail-
able from http://www.color.org.

[8] International Organization for Standardization and International Electrotechnical Commission. ISO/IEC
15444-1:2000, Information technology—JPEG 2000 image coding system—Part 1: Core coding system.

[9] International Organization for Standardization and International Electrotechnical Commission. ISO/IEC
15444-4:2002, Information technology—JPEG 2000 image coding system—Part 4: Compliance testing.

[10] International Organization for Standardization and International Electrotechnical Commission. ISO/IEC
15444-5:2002 Information technology—JPEG 2000 image coding system—Part 5: Reference software.

[11] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall, Englewood Cliffs,
NJ, USA, 2nd edition, 1988.

[12] M. Luse. The BMP file format. Dr. Dobb’s Journal, 9(10):18–22, September 1994.

[13] Sun Microsystems, Inc. OpenWindows Reference Manual (Version 3.4), 1994.

http://netpbm.sourceforge.net
http://www.ece.uvic.ca/~mdadams
http://www.color.org

	1 Introduction
	1.1 Motivation Behind JasPer
	1.2 What is JasPer?
	1.3 Software License
	1.4 Other Sources of Information on JasPer
	1.5 Origin of the Name

	2 JasPer Software
	2.1 Version Identification
	2.2 Obtaining the Software
	2.3 Extracting the Software
	2.4 Building the Software
	2.4.1 Build Process for UNIX (or UNIX-Like) Systems
	2.4.2 Build Process for Microsoft Visual C Studio under Microsoft Windows
	2.4.3 Dependencies on Other Software

	2.5 Reporting Bugs

	3 JasPer Library
	3.1 Introduction
	3.2 Core Code
	3.3 Codec Drivers
	3.4 Image Model
	3.5 JasPer Header Files
	3.6 Initializing the Library
	3.7 Memory Allocation
	3.8 Adding Support for a New Image Format

	4 Application Programs
	4.1 Introduction
	4.2 The jasper Command
	4.3 The imgcmp Command
	4.4 The imginfo Command
	4.5 The jiv Command

	5 Codecs
	5.0.1 BMP Codec
	5.0.2 JP2 Codec
	5.0.3 JPC Codec
	5.0.4 JPG Codec
	5.0.5 PGX Codec
	5.0.6 MIF Codec
	5.0.7 PNM Codec
	5.0.8 RAS Codec

	A Software License

